Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field

نویسندگان

چکیده

Abstract The proficiency of hybrid nanofluid from Cu-Al 2 O 3 /water formation as the heat transfer coolant is numerically analyzed using powerful and user-friendly interface bvp4c in Matlab software. For that purpose, flow between two parallel plates examined where lower plate can be deformed while upper moves towards/away plate. Other considerable factors are wall mass suction/injection magnetic field applied on reduced ordinary (similarity) differential equations solved application. validation this novel model conducted by comparing a few numerical values for case viscous fluid. results imply potency fluid which enhance performance both approximately 7.10% 4.11%, respectively. An increase squeezing parameter deteriorates coefficient 4.28% (upper) 5.35% (lower), accordingly. rise suction strength inflates at presence shows reverse result.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow field and heat transfer in a channel with a permeable wall filled with Al2O3-Cu/water micropolar hybrid nanofluid, effects of chemical reaction and magnetic field

In this study, flow field and heat transfer of Al2O3-Cu/water micropolar hybrid nanofluid is investigated in a permeable channel using the least square method. The channel is encountered to chemical reaction, and a constant magnetic field is also applied. The bottom wall is hot and coolant fluid is injected into the channel from the top wall. The effects of different parameters such as the Reyn...

متن کامل

flow field and heat transfer in a channel with a permeable wall filled with al2o3-cu/water micropolar hybrid nanofluid, effects of chemical reaction and magnetic field

in this study, flow field and heat transfer of al2o3-cu/water micropolar hybrid nanofluid is investigated in a permeable channel using the least square method. the channel is encountered to chemical reaction, and a constant magnetic field is also applied. the bottom wall is hot and coolant fluid is injected into the channel from the top wall. the effects of different parameters such as the reyn...

متن کامل

Nanofluid Flow in a Semi-porous Channel in the Presence of Uniform Magnetic Field

In this paper, the problem of laminar nanofluid flow in a semi-porous channel is investigated analytically using Homotopy Perturbation Method (HPM). This problem is in the presence of transverse magnetic field. Here, it has been attempted to show the capabilities and wide-range applications of the Homotopy Perturbation Method in comparison with the numerical method in solving such problems. The...

متن کامل

Flow field and heat transfer of MgO-Ag/water micropolar hybrid nanofluid in a permeable channel

In this study, the least square method is applied to study the laminar flow, heat transfer and microrotation of MgO-Ag/water micropolar hybrid nanofluid in a permeable channel. The bottom wall is hot and coolant fluid is injected into the channel from the top wall. The base fluid in the channel is water and volume fraction of nanoparticle (50% Ag and 50% MgO by volume) is between 0 and 0.02. By...

متن کامل

effect of magnetic field on unsteady natural convection heat transfer of cu– water nanofluid in a square porous cavity

magnetic field effect on unsteady natural convection heat transfer of cu–water nanofluid in a square porous cavity was studied numerically in here. at first, initial temprature of the cavity was and vertical walls were at temprature . suddenly the right wall's tamprature was changed to and the horizontal walls were adiabatic. the effective parameters in this study were ra , ha, and . which appe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2021

ISSN: ['2045-2322']

DOI: https://doi.org/10.1038/s41598-021-93644-4